Mitteilung aus dem Chemischen Universitätslaboratorium zu Leipzig

Die Gewinnung von 2,4,6-Triaminotoluol-Chlorhydrat

Von Fr. Hein und Fr. Wagner

Mit einer Figur

(Eingegangen am 27. Februar 1935)

Es wurde ausgegangen von 2,4,6-Trinitrotoluol, das in guter Qualität zur Verfügung stand. Schmelzpunkt wie angegeben 81°. Die Reduktion nach der von Weidel¹) angewandten Methode mit Zinn und Salzsäure befriedigte nicht, da infolge hydrolytischer Spaltung zu leicht Verluste eintraten und Ammonchlorid entstand. Nach gleichfalls unbefriedigenden Reduktionsversuchen mit Natriumsulfhydrat²) bzw. Zinn(2)-chlorid in Alkohol³) gelang es schließlich, das Triaminotoluol-Chlorhydrat in besserer Ausbeute mittels Stannochlorwasserstoffsäure in Eisessig nach Dimroth⁴) herzustellen.

Die Präparation wurde folgendermaßen durchgeführt: 240 g Zinnchlorür ${\rm SnCl_2} + 2\,{\rm H_2O}$ wurden mit 600 ccm Eisessig übergossen und so lange mit Salzsäuregas behandelt, bis eine klare Lösung entstand. In diese Lösung wurden 10 g Nitrokörper portionsweise zugegeben, wobei Temperaturanstieg über 40° vermieden wurde. Die anfangs gelblich gefärbte Lösung trübte sich und es fiel das Zinndoppelsalz aus:

 $[CH_3.C_6H_2.(NH_2)_3]_2.H_2SnCl_6.$

¹) Monatsh. 19, 224 (1898).

²⁾ Witt u. Kopetschni, Ber. 45, 1136 (1912).

³⁾ R. Anschütz u. Fr. Heusler, Ber. 29, 2161 (1896).

⁴⁾ Ber. 28, 1412 (1895).

Nach beendeter Eintragung blieb das Reaktionsprodukt etwa 8 Stunden stehen bzw. es wurde 3 Stunden auf dem Wasserbad erhitzt. Darauf wurde filtriert, der Rückstand mit wenig Wasser aufgenommen und die Lösung weiter nach Palmer und Brenke¹) mit H₂S entzinnt.

Die quantitative Ausfällung des Zinns gelang erst nach reichlichem Zusatz von NaHCO₃, das die nach

$$SnOCl_2 + 2H_2S \rightarrow SnS_2 + H_2O + 2HCl$$

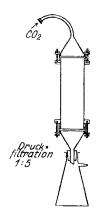


Fig. 1

entstandene freie Säure neutralisierte. Der ${\rm SnS_2}$ -Niederschlag wurde nach Zusatz von Kieselgur filtriert und 2-mal mit 25 ccm Alkohol (96%) gewaschen. Zur Beschleunigung der Filtration wurde in einem geschlossenen, starkwandigen Gefäß mit einem ${\rm CO_2}$ -Überdruck von 2 Atm. gearbeitet (vgl. nebenstehende Figur).

Das klare gelbe Filtrat wurde im Vakuum eingeengt und bei Eiskühlung mit Salzsäuregas gesättigt, wobei das Triaminotoluol - Chlorhydrat in Form einer weißen, gelegentlich leicht gelb-bräunlichen Masse ausfiel, die abgesaugt, mit Alkohol (99%) und reinem Äther gewaschen, im

Exsiccator über $CaCl_2$ und Natronkalk getrocknet wurde. Ausbeute 6,0 g Chlorhydrat $\sim 55,5\,^{\circ}/_{\circ}$ d. Th. Bei Verwendung äquivalenter $SnCl_2$ -Mengen betrug die Ausbeute höchstens $46,3\,^{\circ}/_{\circ}$ d. Th. ²).

Die folgenden Analysen sind stets an rein weißen Produkten ausgeführt worden.

Das Cl wurde fällungsanalytisch nach Volhard bestimmt³).

¹) Ber. 29, 1346 (1896).

²) Ähnliche Beobachtungen haben Thiele u. Escales am Dinitrostilben [Ber. 34, 2843 (1901)] und Pfeiffer u. Sergiewskaja am p-Nitrostilben [Ber. 44, 1110 (1911)] gemacht.

³⁾ Die Halogenbestimmung nach Mohr litt daran, daß die zu untersuchende Lösung im Verlauf der Titration durch Zersetzungsprodukte der Base braun gefärbt wurde, was das Erkennen des Umschlages erschwerte.

	Einwaage	Verbrauch n/10-AgNO ₃	% C ì
Präp. mit Al. I-Ae I-Gemisch (1:1)		, ,	
u. Ae I gewaschen, über 30-proz. KOH u. CaCl ₂ getrocknet ¹)	0,0292 g	3,30 cem	40,0
Präp. über P ₂ O ₅ getrocknet	0,0775 g	0.00	40,7
11ap. uper 1205 genocknet	(0,0706 g	,	,
Präp. aus Methylalkohol umkrystallis.	0,0706 g	8,20 ,, $8,10$,,	40,7 $40,2$
Trap. aus metny talkonor umary statils.	0,0706 g	8,10 ,, 8,15 ,,	40,4
ber. f. CH_3 . C_6H_2 . $(NH_2)_8$, $3HCl$, H_2O	MG. 264,5		40,3
ber. f. CH_3 . C_6H_2 . $(NH_2)_3$, 3 HCl	MG. 246,5		43,2

Wassergehaltsbestimmung

Die $\rm H_2O$ -Bestimmung wurde 1. bei 20° im Vakuum, 15 mm im Exsiccator; 2. in der Trockenpistole bei 67° (Siedepunkt von Methanol) und 15 mm Vakuum durchgeführt.

	Einwaage	\mathbf{Wasser}	$^{0}/_{0}H_{2}O$
Präp. 46 Stdn. über P ₂ O ₅ i.V. 15 mm bei 20° bis zur Gewichtskonst. getrockn.	1,1278 g	0,0732 g	6,5
Präp. 32 Stdn. über P ₂ O ₅ i.V. 15 mm bei 60 bis zur Gewichtskonst. getrockn.	0,4155 g	0,0279 g	6,7
ber. für CH ₃ .C ₆ H ₂ .(NH ₂) ₃ , 3HCl, H ₂ O			6,8

Gesamtanalyse eines Präparates, das über 30-prozent. KOH und $CaCl_2$ getrocknet war

	Ein- waagen	Analytische Daten	°/o- Gehalt	ber. 2)	ber. 3)
Cl-Analyse nach Vol- hard	0,0275 g	$3,10$ ccm $n/10$ -AgNO $_3$	40,0	40,3	
N-Best. mikro-analyt.	4,408 mg	0,615 ccm N (747 mm bei 22°)	15,9	15,9	
H-Best. ", "	4,508 mg	$2,440 \text{ mg H}_2\text{O}$	6,0	6,0	
C-Best. ,, ,,	4,508mg	5,230 mg CO ₂	31,1	31,7	
H ₂ O: 29 Stdn. über P ₂ O ₅ i.V. 15 mm bei 20 ° zur Gewichtskonst. getr.	0,3567 g	0,0247 g Verlust	6,9	6,8	
Cl-Best. der trocknen Subst. nach Volhard	0,0651 g	$7,80~\mathrm{ccm}$ $\mathrm{n/10\text{-}AgNO_s}$	42,7		43,2

¹) Auswaschen mit Alkohol I allein verminderte ebenso wie Umkrystallisieren aus Wasser den Chlorgehalt, was wohl auf teilweise Abspaltung von Salzsäure zurückzuführen ist. Versuche, die Zusammensetzung azidimetrisch zu ermitteln, ergaben zu niedrige Cl-Werte.

²⁾ Für CH₃.C₆H₂(NH₂)₃.3 HCl.1 H₂O (Mol.-Gew. 264,5).

³⁾ Für CH₃.C₆H₂(NH₂)₃.3HCl (Mol.-Gew. 246,5).

204

Danach wird zunächst das Monohydrat des Triaminotoluol-Trichlorhydrates erhalten.

Bei der Schmelzpunktbestimmung im Kullmann-Block zeigten sich folgende Erscheinungen an der lufttrocknen Substanz.

Temperatur	Aussehen der Substanz
1000	weiß
150	gelblich, Anfang der Zersetzung
180	gelb
250	dunkelgelb
280	rötlich-gelb
320	deutliche Zersetzung; Sublimation
350	dunkelbraun